Case Report

Polyethylene fiber post modification with vital pulp therapy in a traumatized immature incisor using Biodentine: A four year follow-up case report

Alem Cosgun1, Halenur Altan2

Abstract

In this case, it was aimed to restore a traumatized permanent incisor with open apex using a modified polyethylene fiber post after amputation as well as to present a four-year long term follow-up. A healthy 10-year-old boy was referred with a complaint of pain caused by tooth number 11. The patient fell and broke his upper incisor ten days ago and no treatment was done before. Total amputation was carried out after clinical and radiological examination. The exposed root pulp was covered with Biodentine™ (Septodont, Saint-Maur-Fosses Codex, France). Glass-ionomer cement (Fuji IX extra, GC Corp., Tokyo, Japan) was placed on the Biodentine™, and after a 3-month follow-up, polyethylene fiber post (Ribbond, Seattle, WA, USA) was placed in the crown since healing was observed in the relevant tooth. The restoration was completed with composite resin (Clearfil Majesty Esthetic Kuraray, Osaka, Japan). Four years later, radiographic examination revealed completed root formation and complete root obliteration. Clinical examination revealed favorable esthetic and functional outcome. Traditional treatments can be modified in order to obtain long term clinical success. Polyethylene fiber post can be used as an alternative method to root canal therapy in complicated crown fractures in teeth with immature root formation due to the advantages such as the possibility of modification according to the crown, aesthetics, easy application, and supporting the vitality of the tooth.

Keywords: Biodentine; Pulpotomy; Ribbond; Tooth Fractures

Correspondence:
Tokat Gaziosmanpaşa University, Faculty of Dentistry, Department of Pediatric Dentistry, Tokat, Turkey
E-mail address: alemcosgun@hotmail.com

Received: 12 October 2020
Accepted: 01 December 2020
Online First: 15 December 2020
INTRODUCTION

Thalassemia is a single gene disorder that is caused by any of more than 200 mutations that affect beta-globin gene expression within the hemoglobin molecule, and it is one of the most common forms of congenital hemolytic anemia manifesting just after the first few months of life.\(^1\) It is usually characterized by an overall reduction in hemoglobin synthesis with ineffective erythropoiesis and hemolysis of mature cells and a massive decrease in mature red blood cell production. Ineffective erythropoiesis leads to skeletal and non-skeletal manifestations\(^2,3\) with extramedullary hematopoesis and extreme expansion of marrow spaces in the long bones, spine, skull, ribs and facial bones\(^2,4\) resulting in the characteristic oro-facial features of prominent maxilla, retruded mandible, class II malocclusion, wide overjet and deep overbite leading to the so-called chipmunk facies.\(^5,6\)

Caries index is high in \(\beta\)-thalassemia major children and their oral health is poor as low priority is given to their oral health which in turn leads to further deterioration of systemic health due to poor masticatory function and the inability to eat and chew food properly.\(^7\) Poor oral health also affects the quality of life of children with \(\beta\)-thalassemia major. They experience mental fatigue, and decreased self-esteem, learning and social relationships.\(^8,11\) Over the past 20 years, the medical management of \(\beta\)-thalassemia major patients has improved enough to expect almost normal life expectancy, so the provision of integral rather than palliative dental treatment should be considered\(^12\). Many studies\(^4,7\) have described the prevalence, oro-facial features and caries prevalence in children with \(\beta\)-thalassemia major but few have evaluated success and failure of dental intervention or compared types of dental interventions in these patients.

The null hypothesis of this study was that there is no difference in the success rate between MTA pulpotomy and indirect pulp capping in children with \(\beta\)-thalassemia major. The aim of the study was to compare between both types of vital pulp therapy in these children.

METHODS

Study Design and Ethics

Ethics approval was obtained from the Ethical Committee of the Faculty of Dentistry, Ain Shams University and Medical Research Ethics Committee of the National Research Centre. The proposal has the ethical approval ID number (PED)-17-3D meeting ID 68 at Faculty of Dentistry, Ain Shams University. Informed consent and assent were obtained from all patients and their parents. This randomized clinical trial study adhered to the Consolidated Standards of Reporting Trials (CONSORT) guidelines. The confidentiality of all data was preserved.

Power analysis was designed to have adequate power to apply a two-sided statistical test of the null hypothesis that there is no difference between the tested groups. By adopting an alpha level of (0.05) a beta of (0.2) i.e., power =80% and an effect size (\(h\)) of (0.746) the predicted sample size (\(n\)) was a total of 60. Sample size calculation was performed using G*Power version 3.1.9.7. Therefore, sixty-five children with \(\beta\)-thalassemia major with having carious primary molars were randomly selected. Randomization was done using statistical analysis software (SPSS, Inc.; Chicago, IL) where patients were assigned to a number starting from (1) to (65) and randomly allocated to the studied groups (i.e. 30 in group (I) and 35 in group (II)) following a simple randomization procedure.

Medical history and medical consultation from the hematologist before treatment, proper coagulation profile (bleeding time) and hemoglobin levels were checked before starting any dental procedure. In children receiving blood transfusions, the dental treatment was carried out after 2-3 weeks of blood transfusion (when blood test results were optimal). Dental histories were also taken before treatment. Clinical photographs and periapical radiographs (Skydent, E-speed film, 2×3cm, size 0, 7/8×1 3/8 in) using the paralleling technique were also taken prior to and after treatment. Eligibility criteria of patients were as follows: (i) Children with \(\beta\)-thalassemia major, (ii) age range of 4-7 years, (iii) clinically fit and well to receive dental treatment (with optimum blood test
results), (iv) no associated or other superimposed systemic disorders.

Inclusion criteria

The inclusion and exclusion criteria were based on the American Academy of Pediatric Dentistry (AAPD) guidelines for vital pulp therapy in primary and young permanent teeth.

Clinical inclusion criteria were as follow: (i) deep carious teeth, (ii) teeth diagnosed from clinical history as reversible pulpitis, (iii) absence of soft tissue swellings, (iv) absence of sinus or fistula, (v) restorable with filling or crown.

Radiographic inclusion criteria were as follow: (i) absence of periapical or furcation involvement, (ii) absence of widening of periodontal ligament space, (iii) no internal or external resorption.

Exclusion criteria of teeth were as follow: (i) non-vital teeth, (ii) symptomatic teeth with preoperative spontaneous pain, (iii) persistent pain and bleeding after hemostasis in cases of selected teeth for pulpotomy, (iv) children who could not continue the treatment or follow up.

All the dental procedures were carried out using a rubber dam (Sanctuary Dental Dam, medium, 5"×5", plain blue, Malaysia) to guarantee the success of vital pulp therapy following the American Academy of Endodontists. The children (patients) were divided into two groups: Group I (n=30) received mineral trioxide aggregate pulpotomy (MTA plus, Cerkamed, Stalowa Wola, Poland) and Group II (n=35) received indirect pulp capping (IPC) with high viscosity glass ionomer cement (Equia fil, GC, Tokyo, Japan)

Study Protocol

Group I: MTA pulpotomy

Preoperative clinical photos and radiographs were taken prior to treatment and local anesthesia was administered. Rubber dam was placed for isolation and moisture control. Caries removal and de-roofing of the pulp chamber was done using round diamond burs (W&H Diamond Burs, Australia). Bleeding was stopped using cotton pellets until there was no bleeding form the orifices of the pulp chamber. On a sterile glass slab, the contents of one bottle of MTA (MTA plus, plus, Cerkamed, Stalowa Wola, Poland) and one drop of distilled water were applied with a standard powder to distilled water ratio 3:1 as per manufacturer’s instructions. A spatula was used to mix MTA as the powder and distilled water were mixed for 30 seconds to achieve a homogeneous consistency similar to wet sand. The mixture was then applied with an amalgam carrier and condensed to the cavity with a suitable sized condenser. The cavity was finally sealed with a final restoration as stainless steel crowns.

Group II: Indirect pulp capping

Preoperative clinical photos and radiographs were taken prior to treatment and local anesthesia was administered. Rubber dam was placed for isolation and moisture control. Selective dentin caries removal was conducted, removing infected dentin from the pulp wall and total removal from the surrounding walls using excavator (Zeffiro #1, stainless steel excavator, Lascod, Italy) compatible with cavity size. Preconditioning of the surface with polyacrylic acid (Dentin Conditioner, GC corporation, Tokyo Japan) for ten seconds followed by washing and drying of the cavity. High viscosity glass ionomer cement (Equa; GC, Tokyo, Japan) was used and mixed according to manufacturer’s instructions and then inserted into the cavity. Superficial protection of the restoration with a coat (Equia coat, GC corporation, Tokyo, Japan) that was cured for ten seconds for surface protection of the restoration.

Clinical and radiographic follow ups were done at baseline and after 6 months and after one year. The clinical and radiographic evaluation criteria complied with the guidelines of the AAPD on vital pulp therapy in primary and young permanent teeth and the timing of the radiographic follow up complied with the guidelines of the AAPD on radiographic prescription for children, adolescents and individuals with special health care needs where failure is satisfying the criteria and success is not.

Clinical Successful Evaluation Criteria

Clinical success criteria included: asymptomatic teeth (absence of pain), absence of soft tissue swelling, absence of sinus or fistula and absence of tooth mobility.

Radiographic Successful Evaluation Criteria

Radiographic success criteria included: the absence of periapical or furcation involvement,
the absence of widening of periodontal ligament space, and the absence of internal or external resorption. At the end of the study, the patients who had received both types of treatment were selected to provide their preferences of treatment type.

Statistical Analysis

Data were collected, revised, coded and entered into the Statistical Package for Social Science (SPSS, Inc.; Chicago, IL) version 23. The quantitative data were presented as mean, standard deviations and ranges when parametric and qualitative variables were presented as numbers and percentages. The comparison between the groups with qualitative data was done using a Chi-square test. Success (0) was the absence of the aforementioned criteria and failure (1) was their presence. The comparison between groups with quantitative data and a parametric distribution used an independent t-test.

The confidence interval was set to 95% and the margin of error accepted was 5% and p-value <0.05 considered significant.

RESULTS

The study included 65 children with β-Thalassemia major with a mean age range of 5.77± 0.96. While Figure 1 shows a representative radiographical follow-up and normal physiological root resorption in a tooth after one year in Group I, MTA pulpotomy, Figure 2 shows increased widening of periodontal ligament space and external root resorption in one year follow-up. While Figure 3 and 4 show representative radiographical follow-up and normal physiological root resorption after one year in Group II, IDP. Tables 1 and 2, and Figure 5 show the success and failure comparative rates. Figure 6 shows patients’ preference of type of treatment received.
Table 1. Clinical success rates in mineral trioxide aggregate pulpotomy (Group I) and indirect pulp capping (Group II)

<table>
<thead>
<tr>
<th></th>
<th>Group I (n=30)</th>
<th>Group II (n=35)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>Failure</td>
<td>Success</td>
<td>Failure</td>
</tr>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Baseline</td>
<td>30</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>6 months</td>
<td>27</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>1 year</td>
<td>27</td>
<td>3</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 2. Radiographic success rates in Mineral Trioxide Aggregate Pulpotomy (Group I) and Indirect Pulp Capping (Group II)

<table>
<thead>
<tr>
<th></th>
<th>Group I (n=30)</th>
<th>Group II (n=35)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>Failure</td>
<td>Success</td>
<td>Failure</td>
</tr>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Baseline</td>
<td>30</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>6 months</td>
<td>27</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>1 year</td>
<td>27</td>
<td>3</td>
<td>90</td>
</tr>
</tbody>
</table>

DISCUSSION

Managing carious primary teeth is a challenge for the pediatric dentist. In children with β-thalassemia major, successful management and outcome depend on evaluating each patient's medical and dental history to determine the best treatment for their age and accurately diagnosing the status of the pulp prior to therapy. If the dental pulp is vital or reversibly inflamed, vital pulp therapy techniques are appropriate.

In deciduous dentition, pulpotomy is the procedure of choice to remove infected, inflamed pulp tissue, and it is usually performed after a pulpal exposure whether carious or mechanical. It allows the preservation of teeth that otherwise would be planned for extraction and it helps maintain the arch integrity.

Formocresol has been the most popular pulp dressing material for pulpotomized primary molars for many years. However, its use has decreased considerably worldwide. The long-term evaluation of MTA when used as the primary molar medication in pulpotomies, has a high success rate. MTA also has no systemic or local toxic side effects and has proven therapeutic properties in various endodontic procedures in primary teeth.

In this study, the clinical and radiographic success rates were both 90% after six months and after one year in cases treated with MTA pulpotomy in Group I without further clinical or
radiological pathological complications. Other studies20,24,25 have had similar clinical and radiographic MTA success rates of 94-100\%. This may be due to dentinal bridge formation at the orifice entrance and the preservation of the vitality of the remaining pulp tissue due to its biocompatibility.20

In this study the treated teeth with MTA pulpotomy were free of any pathological clinical symptoms or radiographic pathology except for 10\% of the treated teeth which showed radiographical alterations as external root resorption. These findings were the same as in a previous study22 which reported radiographical internal resorption due to undiagnosed chronic inflammation within the radicular pulp prior to pulp therapy.

Pulpotomy accompanies presence of alterations as faster root resorption and early loss.26-28 Therefore, primary tooth pulpotomies should be radiographically evaluated at least annually because the success rate of pulpotomies diminishes over time.15,21,24

IPC is best in the case of deep carious lesion without pulp involvement. Two possible treatment options for IPC exist: total and the selective caries removal techniques. The latter avoids greater damage to the tooth and avoids pulp exposure.29,30 IPC is more conservative than pulpotomy because it preserves the vitality of coronal and radicular pulp.31

IPC relies on the selective removal of caries.31-33 The dentin left in place is thereafter covered with a medicament followed by a final restoration. After sealing the cavity, the remaining dentine is capable of remineralization due to changes in the microenvironment caused by the lack of substrates for the bacteria and the caries process is arrested.34, 35 This technique which is based on minimally invasive procedures is favored in current practice for caries treatment,35,36 and it is time-saving and requires less discomfort particularly in β-thalassemic patients.

In this study, the success rate of IPC was 100\% after six months and after one year. The teeth treated with IPC were free of any clinical or radiographic signs or symptoms. Similarly, a study by Vidya et al.22 reported a 100\% success rate in cases treated with IPT.22 Other studies37,38,39 reported a success rate greater than 90\% IPC success rate and considered it a required pulp therapy procedure.

The current study showed that both MTA pulpotomy and IPC are effective pulp therapy techniques for primary teeth in β-thalassemic patients. Vidya et al.22 also studied the success rates of IPC and pulpotomy in the treatment of deep carious lesions in primary molars, and they reported high success rates in both groups with statistically non-significant difference.22 Faugeron et al31 reported greater long-term success (three years) with IPC than pulpotomy for treating deep carious lesions in primary teeth.

At the end of the study, patients who had received both types of treatment were asked to provide their overall satisfaction and preference of the treatment type on a scale of satisfaction from 1-5. The patient preference was higher for IPC (53.3\%) than vital pulpotomy (46.6\%) considering the treatment duration, comfort, cost, and postoperative satisfaction. Rickettes et al39 concluded that IPC is a more conservative, time saving approach the requires less discomfort to the patient. Likewise, Vidya et al22 found that IPC required less chair side time, increased child cooperation and was more cost effective.

One of the limitations of this study is the transfusion schedule of the patients which increased the time taken to finish the study. The present study has also the limitations of the far destinations, non-compliance and patient drop outs due to the medical condition. Another limitation is related to the cost of material taking into account the time of survival of the primary tooth in the oral cavity.

In children with in β-thalassemia major, both vital pulp therapy techniques (MTA pulpotomy and IPC) are applicable but IPC is preferred and more conservative requiring less effort and time by both the patient and dentist.

CONCLUSIONS

Children with β-thalassemia major have a higher caries index than healthy children which is attributable to inadequate dental care and the poor accessibility of dental health services due to their medical condition. MTA placed on
amputated pulpal tissue preserves the pulp vitality and promotes the regeneration of hard tissues, and IPC is a conservative procedure that treats deep carious lesions on teeth with no signs of pulp exposure or symptoms of pulp degeneration. Both techniques are equally successful in treating primary carious molars in β-thalassemic children but IPC is more preferred because it is the less invasive and involves less effort, fatigue, and time.

REFERENCES

through Adolescence. USA: Elsevier; 2019. p.337-338

How to cite this article:

Declarations

Acknowledgements: Our deepest gratitude and appreciation goes to Prof. Dr. Amr Mahmoud Abdel-Aziz, Professor in Pediatric Dentistry and Dental Public Health Department, Ain Shams University for his supervision, continuous effort, sincere advice and valuable guidance. Our deepest thanks and appreciation also goes to Prof. Dr. Ghada Yousef El.Kamah, Professor in Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre for her great support, experience and guidance. Our special thanks goes to Dr. Mohamed Zayed Radwan, lecturer in Pediatric Dentistry and Dental Public Health Department, Ain Shams University for his sincere cooperation and effort and his continuous support. Also our thanks goes to Dr. Maha Rasheed Abouzaid, researcher in Oro-dental Genetics Department, Human Genetics and Genome Research Division, National Research Centre for her hard work, great help and patience. Finally, all thanks goes to the patients and their parents who participated in this study for their willingness to participate in this study and their patience because without their cooperation, this study wouldn’t have been possible.

Conflict of Interest Statement: The authors disclose no potential conflicts of interest.

Ethics Statement: Ethics approval was obtained from the Ethical Committee of the Faculty of Dentistry, Ain Shams University and Medical Research Ethics Committee of the National Research Centre (approval ID number PED-17-3D).

Informed Consent: Written consent was taken for participation of both parents and children in the study.

Author contributions: Conception and design: All Authors; Acquisition of data: LMEG, AMAA, GYEK; Interpretation of data: LMEG, MZR, GYEK; Drafting article: LMEG, MZR, ; Revision article: LMEG, MZR, AMAA, GYEK; Final approval: All Authors

Funding: This work is not finantiated.

Data Availability: The data used to support the findings of this study can be made available upon request to the corresponding author.

Peer-review: Externally double-blinded peer-reviewed.